UNIT 6481	Module 3	1.3.2	Kinetic & potential Energy	•	KINETIC ENERGY (Ek)	1	
• <u>Candida</u>	tes should be able to :			•	This is the energy possessed by a moving object.		
• 5e	elect and apply the equation $E_k = rac{1}{2}mv$	on for kii 2	netic energy :	•	KINETIC ENERGY = $\frac{1}{2} \times MASS \times SPEED^{2}$ $E_{k} = \frac{1}{2} m v^{2}$ mass m		
• Aț th	pply the definition of work the change in gravitational	k done to potentic	derive the equation for I energy.		(J) (kg) $(m s^{-1})$		
• 5e po	elect and apply the equation tential energy near the E ΔEp = m	on for th Farth's su g Δh	e change in gravitational rface :	•	u = 0 $m = s$ $m = s$		
• Ai gr	nalyse problems where the ravitational potential ener	ere is an rgy and k	exchange between i netic energy .	Consider an object of mass (m) acted on by a constant force (F) which gives it a constant acceleration (a) , and increases its velocity from rest to a final value (v) over a distance (s) .			
• Ap th fie	• Apply the principle of conservation of energy to determine the speed of an object falling in the Earth's gravitational field.				kinetic energy gained by object, E_k = work done by force F E_k = force x distance moved in the force direction E_k = F x s E_k = mas (since F = ma) But $v^2 = u^2 + 2as = 2as$ (since u = 0) So $as = \frac{1}{z}v^2$		
					Therefore : $E_{k} = \frac{1}{2} m v^{2}$ $FX \Delta \emptyset \Rightarrow$	2008	

UNIT 64	481	Module 3	1.3.2	Kinetic & potential Energy	• GRAVITATIONAL POTENTIAL ENERGY (Ep) 2		
• PRA	ACTIC	E QUESTIONS (1)			• When an object is lifted to a higher position above the ground, work		
1 Am abr for	notorc raking the m	cycle has <i>5 x 10⁴ J</i> of ki i force of <i>650 N</i> , calculat notorcycle.	netic ene te the <i>sh</i>	rgy. If the brakes deliver ortest stopping distance	<i>is done against the force of gravity</i> and this transfers <i>gravitational</i> <i>potential energy</i> to the object (Strictly speaking it is the Earth- object system which gains gravitational potential energy).		
2 Calc whe	culate en it a	the <i>increase in kinetic</i> ccelerates from <i>10 m s</i> ⁻	<i>energy</i> o ¹ to <i>25 n</i>	f a vehicle of mass <i>1200 kg</i> n s ⁻¹ .	• GRAVITATIONAL POTENTIAL ENERGY (E_p) is the energy possessed by an object due to its position or height above the Earth.		
3 A b fire the	ullet o ed fro gun b	of mass 8.0 g is given 16 m a gun. Calculate the ve parrel.	6 0 J of k elocity of	inetic energy when it is the bullet as it leaves	DERIVATION OF $E_p = m g h$ Consider an object of mass (m) which is raised through height (h)		
4 Use the	 Use the internet to find approximate masses and speeds of each of the following and hence estimate a value for their kinetic energy: A loaded family car travelling along a motorway at the speed limit. 						
•	A n A f	nale Olympic 100 m sprin [.] Fully laden Jumbo jet airc	ter. :raft at n	ormal cruising speed.	Therefore : ground		
•	A t An acc	ennis ball served by a Wi electron travelling at 6.8 celerator.	imbledon 3 x 10 ⁸ m	champion. s ⁻¹ as it exits a linear	$E_p = mgh$		
•	The	e Earth moving at its orb	ital speed	d around the Sun.	FXA © 2008		

UNI	T G481	Module 3	1.3.2	Kinetic & potential Energy	3			
•	PRACTIC	E QUESTIONS (2)			$ \begin{array}{c} \hline E_p \\ \hline E_p \\ \hline E_p \\ \hline E_p \\ \hline E_k $			
1	An athlet starts at which is . in <i>gravita</i>	re of mass <i>76 kg</i> runs up a point <i>200 m</i> above sea 950 m above sea-level. <i>C</i> ational potential energy	a hill in t -level an alculate (g = 9.8	he Lake District. He d finishes at the summit the athlete's increase 1 N kg ⁻¹).				
2	A catapu used to p the <i>maxi</i>	It has <i>25 J</i> of elastic eneroject a marble of mass a marble of mass a mum height reached by t	rgy. If 5.0gve he marb (Take	all its elastic energy is rtically upwards, what is le? g = 9.81 N kg-1).	• The diagram above shows the cart at various positions on the roller coaster as well as the energy transformations which occur at each point.			
3	A ball of to a heig the ener	mass <i>0.25 kg</i> drops fron nt of <i>8.5 m.</i> Assuming n <i>gy lost on impact</i> with th	n a heigh egligible ne ground	t of <i>12 m</i> and rebounds air resistance, calculate 1 <i>(g = 9.81 N kg⁻¹).</i>	 At the top of the first hill, the cart is momentarily stationary and only has E_p. As it accelerates down the slope it loses E_p and gains E_k (i.e. E_p is being transformed into E_k). 			
•	Ep-Ek TA	ANSFORMATIONS ON	A ROLL	ER COASTER				
•	A roller of with an e transform potential and vice	coaster provides us excellent example of mations of gravitational energy to kinetic energy versa. pulls the cart over the to	n		 At the bottom of the slope, the cart's initial E_p has been transformed into E_k. As it runs up the second hill, work is done against gravity and so the cart slows down. It loses E_k and gains E_p (i.e. E_k is being transformed into E_p). 			
	of the first hill. It then runs down the other side, accelerating as it goes. The second hill is lower than the first and the cart is just fast enough to make it over the top and once again acce down the second slope. The work done on the cart by the m transferred to gravitational potential energy which is then transformed to kinetic energy as it speeds down the slope.			st and the cart is moving ad once again accelerate the cart by the motor is rgy which is then to down the slope.	As the cart moves along, some of its kinetic energy is used to do work against friction and air resistance. Thus, some of the cart's kinetic energy is transformed into heat and sound energy and it is therefore unavailable for transformation into gravitational potential energy. For this reason, the cart cannot return to its original height and so the second hill must be lower than the first and the third must be lower than the second and so on.			

UNIT 6481

•

Module 3 1.3.2

Kinetic & potential Energy

- There are many other examples of Ep Ek transformation.
 - In the Winter Olympics **Ski Jump** competitors slide down a long snowcovered slope from a great height. E_p is transformed into E_k and this is used by the jumper to achieve the maximum possible jump distance.

 If an object is thrown upwards, its initial E_k is transformed into E_p as it rises and slows down. Eventually, when it reaches the maximum height, all the E_k is transformed into E_p (assuming zero air resistance).

In the case of an oscillating simple pendulum, there is a continuous interchange of E_p and E_k as the bob moves from $C \rightarrow A \rightarrow B \rightarrow A \rightarrow C$.

At *C* and *B* where the bob momentarily comes to rest, the bob has zero *Ek* and maximum E_p and at *A* where the bob is moving at its

maximum velocity, E_p is zero and E_k = mgh has its max value.

As we have seen in all the examples considered, when an object falls its E_p decreases and its E_k increases. Assuming no energy is lost in the process :

E_p lost = E_k gained

This relation can be used to solve a variety of problems, such as the **velocity** attained by an object when it falls from a given height.

Consider an object of mass (m) which Falls from a height (h) above the ground.

 $E_k gained = E_p lost$ $\frac{1}{2}mv^2 = mgh$

From which : $v = \sqrt{2gh}$

FXA @ 2008

UNIT	Г <i>G</i> 481	Module 3	1.3.2	Kinetic & potential Energy	•	HOMEWORK QUESTIONS 5		
•	PRACTIC	CE QUESTIONS (3)			1	Describe the energy changes that occur in each of the following :		
1	A high di of gravit diver's gr energy d the wate	iver reaches the highest p ry is 11.4 m above the wa ravitational potential ener luring the dive, calculate t rr (Take $g = 9.81 \text{ m s}^{-2}$).	point in h ter surfo gy is tra he veloci	is jump at which his centre ace. Assuming that all the nsformed into kinetic ity with which he enters		 (a) A cyclist freewheels from rest down a hill and then uses the brakes to stop at the bottom. (b) The bob on a simple pendulum is displaced from equilibrium with the thread taut and then released. The bob swings across to maximum displacement on the other side of the equilibrium position. 		
2	An object of mass 0.75 kg is projected vertically upwards with a velocity of 12 m s^{-1} . If it reaches a height of 6.75 m, calculate the energy loss caused by air resistance (Take $g = 9.81 \text{ m s}^{-2}$).					 A rock falls from the top of a 75 m high cliff and strikes the ground at the bottom with a velocity of 35 m s⁻¹. (a) What percentage of the rock's initial gravitational potential energy is transformed into kinetic energy as a result of the fall ? 		
3	A steel b steel tab	ball bearing of mass <i>0.05</i> ble is released from rest o	<i>kg</i> at a h and it is f	eight of <i>2.0 m</i> above a ound to rebound to a		(b) Explain what happens to the rest of the rock's initial energy.		
	neignt of (a) (b) (c) (d)) The <i>gravitational poten</i>) The <i>kinetic energy</i> and before impact.) The <i>gravitational poten</i> bearing when it rebounds) The ball bearing's <i>reboun</i>	tial ener <u>s</u> velocity of tial ener <u>s</u> to a heig nd veloci	by lost during the fall. The ball bearing just by gained by the ball ght of 1.8 m. (Take $g = 9.81 \text{ m s}^{-2}$).	3	The diagram opposite shows the vertical section through a ski track. A skier of mass 76 kg starts from rest at A. Assuming friction to be negligible, calculate : (a) The skier's velocity at point B.		
						(b) The <i>maximum horizontal distance (s)</i> from point O that the skier reaches.		

FXA @ 2008

6